The content of THIS file, while created from PUBLIC DOMAIN material, produced by the U.S. (or other) Government at taxpayer expense, is presented in THIS digital format, produced from the ORIGINAL hardcopy document, for the benefit of all mankind, in hoping to help spread the idea of PREPAREDNESS for any and all threats that may come from either natural, extraterrestrial (space based), or manmade sources.

There are too many situations and incidents that can come to pass in everyday life, that when time is taken to learn and skills obtained, can mean the difference between life and death. Sept. 11, 2001 proved to the world that no matter how safe a person thinks they may be, death and injury can come from the most UNLIKELY place, at any time. The documents presented in this series of digitized works, can help the average person with the knowledge within, to know how to save those persons closest to them in REAL disaster. Help spread this idea of sharing SURVIVAL INFORMATION.

If you have documents from any era, on any disaster or civil defense area, PLEASE contact Richard at his email address of RAFLEET@AOL.COM. Check the website for the LATEST additions to the CIVIL DEFENSE NOW online library archive. All data online, and much more, is also available on CD-ROM. Information is available at the website on how to obtain it. Thanks for your support, and enjoy the information contained on the following pages. Share them with those who will learn from them and teach what they know to others.

Donations of U.S. or other civil defense documents, articles, books, videos, digitized ephemera, patches, tools, photos, or anything of this nature is appreciated, as well as cash gifts or donations to support the website costs and bills. Address information is available on the homepage of Civil Defense Now!

- Richard Fleetwood – January 2002 — ALL RIGHTS RESERVED —

This document may NOT be reproduced commercially on any media WITHOUT EXPRESSLY WRITTEN permission from the creator of this digital presentation. Educational Institutions MAY use this material in any way needed.

Permission granted to individuals for PERSONAL USE ONLY.
Protection is provided in a basement corner by bricks or concrete blocks between the overhead joists. A beam and jack column support the extra weight.
PLAN FOR 12' x 16' SHELTER

- 8x8 PIER
- CENTER LINE OF EXISTING BEAM (OR WALL)
- 6" BEAM
- ADJUSTABLE POST
- 2x10 JOISTS

PLAN FOR 12' x 12' SHELTER

- 8x8 PIER
- CENTER LINE OF EXISTING BEAM (OR WALL)
- 8WF BEAM
- ADJUSTABLE POST
- 2x10 JOISTS

BLOCK UP ANY WINDOWS IN SHELTER AREA
1. **Existing Wood Floor, Subfloor, and 2x10 Joists at 16" C to C**
 - Drill 1/16" pilot hole into 2x10 joist.
 - Use 8x2" wood screws.

2. **6 Bricks Wide Between Joists**
 - 18 bricks per running ft. of plenum space.
 - Use 5/8" x 4" x 6" bearing plate.
 - Use 4-3/8" x 3" bolts.
 - Use DFPA Ext Grade Plywood.
 - Weld plate to column.
 - See Butt Joint Detail.

3. **Steel Adjustable Post**
 - See Base Plate Detail.
 - Steel Alustab Steel Post.

4. **Existing Beam (or Wall)**
 - butterflies according to position of outside joist.
 - Use 2" x 2" x 2" x 2" wood screws.

5. **8' Beam Locate at Joist Midspan**
 - (Screw spacing)
 - Cut to fit.

6. **Foundation Plate Plan**
 - Drill holes in link with holes in column base plate.
 - Adjustable steel post.
 - 3/4" x 6" anchor bolt & washers.
 - Expansion anchor.

7. **Base Plate Detail**
 - Butt Joint Detail.
 - Butt Joint Plan.

Plan of Typical Plywood Ceiling Panel

Section A

Section B
CAUTION

This home fallout shelter design should only be constructed in low risk areas. A low risk area is one which is not expected to be subjected to the blast effects of a nuclear weapon. It is suggested you contact your State or local civil preparedness director for information concerning the type of area you live in, i.e., low risk or high risk area.

GENERAL INFORMATION

This shelter can be permanently installed in the basement of your home and will not interfere with its utility in any way.

In basements whose walls are mostly below grade on all four sides, adequate shelter from fallout radiation is provided by modifying the overhead floor joist and ceiling construction as shown in the drawings. The plywood, which is screwed to the bottoms of the joists, supports the masonry shielding material and provides a solid base for a more decorative ceiling treatment. A beam and jack post are used to support the extra weight. Approximately 2 man days are required to construct the ceiling.

SHELTER SIZE

The plans on the preceding pages show two sizes of shelters of this type - a 12' x 16' size, which may be suitable for use in many one story homes, and a 12' x 12' size, which is suitable for use in many two story homes.

On the following pages, under LIMITATIONS OF THE CEILING MODIFICATION SHELTER IN BASEMENTS, you will find illustrations of the conditions which make this type of construction an effective shelter, and some additional things that must be done if these conditions are not met by your particular basement situation.

Note that if some joist spaces contain heating ducts, or are closed in with sheet metal to serve as return air ducts, the protection in this area of the shelter is reduced since bricks or blocks cannot be placed as shown in the drawings.
LIMITATIONS OF THE CEILING MODIFICATION SHELTER IN BASEMENTS

This cross-section of a one story house shows radiation coming into the basement from fallout particles on the roof and the ground. Most of the radiation comes from the roof because of the shielding effect of the ground outside the basement walls.

The shaded area in the basement floor plan shows the location of the best potential shelter area (approximately 50 square feet). The drawings on the preceding pages are for the adding of bricks or blocks in the ceiling over this best corner.

This placement of added weight in the proper portion of the basement ceiling will considerably improve the protection in the best corner. Note that is not necessary to add this weight to the entire ceiling area.

The extent of the ceiling modification area depends on the type of house (i.e., one or two story), the dimensions of the basement, and the amount of basement wall exposure. In a one story house, approximately one-quarter of the area of the basement ceiling should be filled with the concrete blocks or bricks in order to obtain the most protection out of this improvement.

This arrangement will effectively shield all of the radiation coming from the roof - the largest contributing source.
If it is found to be impractical to shield one quarter of the basement ceiling area, the extent of ceiling modification may be reduced to any desired size by constructing vertical masonry walls on the two open sides of the shielded area, thus providing a room suitable for use as a hobby or laundry room. These masonry walls will also provide protection from excessive amounts of radiation coming through exposed portions of the basement wall.

In homes with 2 or more stories above ground, the extent of the basement ceiling modification can usually be reduced to 12' x 12'. Note, however, that vertical side walls may be required if the basement wall exposure exceeds two feet.

Adding bricks or blocks to the basement ceiling can also create shelter in certain portions of the basements of split-level houses. It is recommended that expert advice be sought for basement situations which do not fit the plan sizes or illustrations in this pamphlet.
The MATERIALS LIST shows quantities for the two plan sizes shown. If additional materials are required for the building of shielding walls in an emergency, they must be added to the list.

MATERIALS LIST

<table>
<thead>
<tr>
<th>Item</th>
<th>Actual Number Required For 12’ x 16’ Size</th>
<th>Actual Number Required For 12’ x 12’ Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masonry:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4” x 8” x 16” solid concrete blocks or 2-1/4” x 4” x 8” bricks</td>
<td>432 blocks or 2492 bricks</td>
<td>330 blocks or 1978 bricks</td>
</tr>
<tr>
<td>8” x 8” x 8” solid concrete blocks (standard stone aggregate no-sand forming)</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Mortar:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prepared dry-mix bags</td>
<td>1 bag</td>
<td></td>
</tr>
<tr>
<td>Plywood sheets: (cut to fit exact basement dimensions)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/2” 5-ply Utility B-C grade, good one side. 2’-0” x 8’-0” sections</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>2’-0” x 4’-0” sections</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Steel:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8WF17 Beam (Determine length from basement dimensions). Maximum span 16’-0” *</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Adjustable steel posts with tubes 13 ga., top tube 2-1/2”, bottom tube 2-3/4” with 5” x 6” x 1/4” plate welded to each end.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8” x 8” x 3/8” extra base plate, 4-7/16” holes in each plate.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hardware:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3/8” x 3” sq. head unfinished bolts each with 2 washers and nuts</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3/8” x 6” sq. head unfinished bolts each with 1 washer and nuts</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3/8” size multiple-expanding machine bolt anchors hole size is 3/4” x 2-7/8”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrugated brick ties, galvanized steel 23 ga., 7/8” x 7”</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>#5 screw gage size lead insert shields, hole size 1/4” x 1-1/2”</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>#5 x 1-1/2” unfinished wood screws</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>#8 x 2” cad. plated wood screws, c. s.</td>
<td>260</td>
<td>195</td>
</tr>
<tr>
<td>Special tools:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1/4” and 3/4” star drills to install anchoring devices</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Greater depth required for longer spans
CONSTRUCTION SEQUENCE

1. Drill holes in block wall for lead insert shields and attach corrugated ties with screws, two per mortar joint.
2. Lay up 8” x 8” masonry pier against wall, tying pier to wall with corrugated ties.
3. Locate and drill for machine bolt anchors in basement floor using base plate of jack post for template.
4. Thoroughly coat under side of foundation plate with rust-inhibiting paint.
5. Place foundation plate and base plate of jack post over anchors and drive anchor bolts tight.
6. Lower jack and bolt one end of steel beam to top plate, resting other end temporarily on top of pier.
7. Raise jack to level position of beam, shimming under pier end to a snug fit under the joists.

 PRECAUTIONARY NOTE: Excessive tightening of the jack post at this point may cause undue stress in the joists and slab, as the ceiling spaces are filled. Make several adjustments in the post as the material is added.

8. Grout mortar under beam at pier.
9. Cut plywood into 2’ x 8’ sheets.
10. Starting at wall, attach plywood to joist bottoms, using 2” #8 screws.
11. Remove cross bridging, if any, from existing joist spaces.
12. Fill the joist spaces with blocks or bricks.
13. Repeat steps 10, 11 and 12 for each of the other sheets.

Before constructing the shelter described here, you should check to see that the construction conforms to your local building codes, and whether a building permit is required.

If work is to be done by a builder or contractor, it is recommended that firms be retained that carry necessary insurance and guarantees to properly protect the owner against subsequent liability and claims on the work and to ensure satisfactory results. Members of the National Association of Home Builders and the Associated General Contractors meet these and other requirements of protection for the home owner.